Determination of Potential Agricultural Conservation Savings (Low End of Range) Westside San Joaquin River

Input Data from DWR

1,361 (1,000 af) Applied Water Depletion 1,041 (1,000 af) ET of Applied Water 973 (1,000 af)

Assumptions for Calculations

2. % lost to Channel Evap/ET 3 =

1. Ave. Leaching Fraction = 14%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

> canal lining: tailwater: flexibility: meas/price:

(adjustment factor based on region variation in water districts)

4.5 (points for this region's districts

1.125 = adjustment factor

37% = district portion

63% = on-farm portion

of 4 points for average)

4%

Calculations from Input Data

(1,000 af)

Total Existing Losses

Total Irrecoverable losses

Total Recoverable losses

Ratio of Irrecoverable Loss

Portion lost to leaching Portion lost to Channel Evap/ET

Total Loss Conservation Potential

Irrecoverable Portion

Recoverable Portion

388 (Diff betw. Applied Water and ETAW)

68 (Diff betw. Depletion and ETAW) 320 (Diff betw. Applied Water and Depletion)

18% (Irrecov divided by total existing losses) 24 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

54 (Applied Water * % lost to Channel Evap/ET)

310 (Total Existing loss - portion to leaching - portion to channel evap/ET)

0 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

310 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	124	0	124
CALFED Increment =	next 30%	0.30	93	0	93
Remaining =	final 30%	0.30	93	0	93
	'		310	0	310

Summary of Savings:

Existing Applied Water Use =

1.361

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		77	. 58	135
District		46	35	81
Total	388	124	93	217

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		77	58	135
District		46	35	81
Total	320	124	93	217

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		0	0	0
District		00	0	0
Total	68	0	0	0

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.

Determination of Potential Agricultural Conservation Savings (High End of Range) Westside San Joaquin River

Input Data from DWI

Applied Water 1,361 (1,000 af) Depletion 1,041 (1,000 af) ET of Applied Water 973 (1,000 af)

Assumptions for Calculations

1. Ave. Leaching Fraction = 10% 2. % lost to Channel Evap/ET 3 = 2%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

> canal lining: tailwater: flexibility: meas/price:

(adjustment factor based on region variation in water districts)

Calculations from Input Data

(1,000 af) **Total Existing Losses**

388 (Diff betw. Applied Water and ETAW)

of 4 points for average) 1.125 = adjustment factor

Total Irrecoverable losses

68 (Diff betw. Depletion and ETAW)

37% = district portion

Total Recoverable losses Ratio of Irrecoverable Loss 320 (Diff betw. Applied Water and Depletion)

63% = on-farm portion

18% (Irrecov divided by total existing losses)

4.5 (points for this region's districts

Portion lost to leaching Portion lost to Channel Evap/ET 17 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Total Loss Conservation Potential

27 (Applied Water * % lost to Channel Evap/ET)

Irrecoverable Portion

344 (Total Existing loss - portion to leaching - portion to channel evap/ET) 24 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

Recoverable Portion

320 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

· .		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	137	9	128
CALFED Increment =	next 30%	0.30	103	7	96
Remaining =	final 30%	0.30	103	7	96
			344	- 24	320

Summary of Savings:

Existing Applied Water Use =

1,361

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		86	64	150
District	<u></u>	52	39	91
Total	388	137	103	241

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		80	60	140
District		48	36	84
Total	320	128	96	224

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		6	4	10
District		4	3	7
Total	68	9	7	17

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.